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Abstract 

The geometrical theory of edge diffraction is applied to the problem of scattering 
from both paraboloidal and hyperboloidal reflectors. The results are compared with 
classical results from geometrical optics and vector diffraction theory. It is found 
that the edge-diffracted field provides an excellent approximation to the rigorously- 
determined field except in certain regions such as shadow-light boundaries. 
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Edge Diffraction from Truncated Paraboloids 
and Hyperboloids 

1. Introduction 

The useful theory developed by J. B. Keller (Ref. 1) to 
explain diffraction phenomena in terms of “diffracted rays” 
has recently been applied to the problem of scattering 
fmm certain shaped reflectors of interest in micrnwave 
antenna theory (Refs. 2, 3). The geometrical theory of 
diffraction enables important scattering behavior to be 
more easily understood and related to the parameters 
involved. The geometrical theory also provides an inde- 
pendent check on the classical Kirchhoff integral theory 
in regions where the validity of the Kirchhoff method is 
in question. Furthermore, the computational time required 
by the geometrical theory is considerably less than that 
required by the Kirchhoff theory. 

The subject of this Report is the application of the geo- 
metrical theory of singly edge-diffracted rays to scattering 
from paraboloids and hyperboloids. While some aspects 
of the analysis have appeared previously in the literature, 
the present treatment presents: 1) a quantitative compari- 
son of the geometrical and integral theories; 2) the appli- 
cation of axial caustic correction factors to the theory; and 
3) some results which may indicate the usefulness of the 
integral theory in regions of previously doubtful validity. 

II. Keller Theory of Edge-Diffracted Rays: 
Normal Incidence’ 

The Keller theory will be outlined briefly for the case 
of an electromagnetic wave incident upon a conducting, 
semi-infinite plane: z = 0; x 0: Fig. 1. It will be assumed 
that the incident wave can be interpreted in terms of a 
ray or wave normal, and that this ray is normally incident 
upon the edge. In terms of the geometry of Fig. 1, the 
incident ray lies in a plane of constant y, and is incident 
from a direction (Y with respect to the z-axis. In accor- 
dance with the Keller theory, when such a ray strikes the 
edge, it generates “diffracted rays” which emerge radially 
in all directions but which remain in the same constant-y 
plane as the incident ray, Fig. 2. 

The intensity of the edge-diffracted ray in an arbitrary 
direction 6 is, for the case that the E-field of the incident 
ray is parallel to the edge: 

- E .  e i k r e i i i / 4  

2 (2xk)% 
znc H-plane: Ed = 

x [sec?4(8 -a) + cscM(e + 41 (T)-% (1) 

‘The Keller theory is considerably more general. For this Report, 
however, only the normally incident case will be considered. 
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Fig. 1. Edge-diffracted geometry 

and for the case that the H-field of the incident ray is 
parallel to the edge: 

SEMI-INFINITE 
CONDUCTING PLANE 

Fig. 2. Normally-incident edge-diffracted rays 

Equations (1) and ( 2 )  are based on asymptotic forms of the Sommerfeld solution of the half-plane problem (Ref. 4) and 
are not valid in the direction of geometrical reflection (0 = -a) or in the direction of the shadow-light boundary 
(0 = + x ) .  Einc in Eq. (1) is the intensity of the E-field of the incident ray at the edge, and Hi , , ,  in Eq. ( 2 )  is the inten- 
sity of the H-field of the incident ray at the edge. 

It is possible to extend Eqs. (1) and ( 2 )  to edge diffraction from a surface of revolution, illuminated by a spherical 
wave emerging from a point on the axis of symmetry; this surface is shown as a deep paraboloid in Fig. 3. Every inci- 
dent ray impinges normally on the edge-or rim-of the reflector. Under the assumption that in the vicinity of every 
point on the rim diffraction takes place locally as a plane wave incident on a half-plane, the scattered field is again 
described by “diffracted rays” given by: 

[sec?4(0 - a) + csc%(e + 41 -E .  e i k ~  e i u / 4  

2 (25;k)”L 
i nc H-plane: Ed = 

[see%(@ - a) - cscW(0 + a)] -H. e r k r  e ~ u / 4  

2 (27rk)’rL 
I nr E-plane: Hd = 

(3)  

(4) 

These expressions are identical to Eqs. (1) and ( 2 )  with the exception of the final factor. This factor accounts for 
the divergence of the tube of energy along the diffracted ray. For the initial case of a plane wave incident on a 
half-plane the energy of the diffracted rays diverged as a cylindrical wave in accordance with the factor (r)-$s in 

2 J P L  TECHNICAL R€PORT 32- 7 7 13 



Eqs. (1) and ( 2 ) .  For the surface of rotation the edge- 
diffracted energy diverges as [T (1 + r/p)]-'h where p is the 
distance along the ray from the edge to the axis. The 
point C where the ray, or its backward extension, inter- 
sects the axis is of singular interest, because here the cross- 
section of the tube of rays shrinks to zero. It should be 
noted that p is a signed distance, positive if the edge is 
between C and P ;  negative if C is between the edge and P.  

- 

* 

Equations (3) and (4) are not valid for 0 = -a and 
8 = a + T. Also, Eqs. (3) and (4) become infinite for all 
points P on the axis, because the axis is a caustic, i.e., the 
locus of points where the rays intersect. An axial caustic 
correction factor must be applied to determine the edge- 
diffracted fields on the axis. 

The above analysis represents a first-order theory, inas- 
much as an edge-diffracted ray may be incident on the 
opposite edge, giving rise to doubly- or even multiply- 
diffracted edge rays. Other effects may occur: an edge 
diffracted ray may be reflected from the reflector in the 
same way that a geometrical-optics ray is reflected. Rays 
may "creep" along the surface or emerge tangentially from 
the surface. Although these effects are of considerable 
interest (Ref. 5), only the singly edge-diffracted ray will be 
included in the analysis following. 

FIELD 
POINT P 

DIFFRACTED 
RAY 

INCIDENT RAY 

- 
'I C F 

INCIDENT RAY 

- 
'I C F 

SOURCE OF 
INCIDENT 
RAYS 

\ 
Fig. 3. Edge-diffracted geometry for 

surface of revolution 

111. Edge Diffraction from a Paraboloid 

The results of the previous section have been applied to compute the radiation field from a paraboloid fed by a 
point-source feed located at the focus, Fig. 4. With reference to Eqs. (3) and (4) the singly edge diffracted fields from 
Edge 1 are: 

[ r1 ( 1 + 3% - E .  , i k r l e i r / 4  

[sec%(Ol - a) + csc%(e, +a)] I nc 

2 (2ak)s  H-plane: Edl = 

[sec%(O1 -a) - csc?4(O1 + a)] -H.  , ikrl ,i"/-l 
%TIC 

2 (27rk)%5 E-plane: Hdl = 

It may be easily shown that 1 + rl/pl = r sin * / ( D / 2 )  and at great distances T c r1 + ( D / 2 )  sin -\k and O1 E k - a. (For 
the paraboloid a is negative.) The result of these approximations is that, at great distances: 

O < * < T  (7) 
1 +- - E .  1 nc , ikr ,- i [ ( k D / Z )  s i n  9- 71/41 (kD/2)% 1 

2 (27r)'h (kr)  H-plane: Edl = 
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NORMAL 

D 

f 

NORMAL 

Fig. 4. Edge-diffracted geometry for paraboloid 

Equations (7) and (8) are valid in the entire range of + from 0 to 7i with the exception of q = 0 and + = X ,  which are the 
axial caustics, and + = x + 2a, which is the shadow-light boundary. 

In a similar manner, the singly edge-diffracted ray from Edge 2 can be calculated, with the exception that this ray 
does not propagate directly into the region 7r/2 < + < 7r/2 - (Y which is blocked by the paraboloid, Fig. 4. Consequently: 

1 +- 0 < * < 7r/2 
- E .  anc , ikr  ,-i [ ( k D / ~ ) s i n Y . - n / 4 1  

2 (27r)ih (kr) 
1 

H-plane: Ea2 = (9) 

1 - H .  anc e i k r  e ~ i [ ( k D / 2 )  sin -4- 7/41 

0 < * < 7r/2 
sin - 2 (27r)'h (kr) E-plane: Hdz  = 

7r 7r --< + <2-a 2 H-plane: Edz = 0, 

7r 7r 
E-plane: Hdz = 0, --<*<z-a 2 
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The total singly edge-di&aded ray in each of the principal planes is then the sum of the two individual rays, leading 
to the final result: 

H-plane : . * k 
-E. znc g i k r  (kD/2)% [ ( cosk: cos a ) ( sin 2 sin a 

?P k 
2 

E d  = cos 5 + i sin T 
(%)H (kr) (sin k)H cos2- - sin2 a cos2 - - sin2 a 

E-plane: 

k 
sin-sina ~ )] -Hinceikr(kD,2)G[ ( c o ~ ~ c o s a  k ) ( 2 

cos T + isin7 
k k '  
2 cos2 - - sin2 (Y sin 2 sin2 a cos2- - (2x)W (kr)  (sin k)% 

H d  = 

1 - < k < 5 - a  x x 

- Hinc eikr (kD/2)% 1 _- - < ! P < 5 - a  x x 

2 H-plane: Ed = 

(2,)% (kr )  (sin k)M 2 E-plane: Ha = 

H-plane: 

* k 
2 sin - sin (Y 2 - cos - cos CY 

E d  = -Einc (2x)% (kr) eikr (sin (kD/2)% k)H [ cosT(L- s i n 2  k cosz- k - sin2 CY 

2 

E-plane : 

?P k 
sin - sin CY 2 

!P 
2 

- Hinc eikr (kD/2)% 
(2,)s (kr) (sin ?P)% sin2 CY s i n 2  cos2- - 

Ha = 

where T = (kD/2) sin ?P - x / 4  
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The singularity caused by the axial caustic may be removed. For small values of q it may be shown that the total 
singly edge-diffracted ray is: 

( D / 2 ) H ( s e c M [ 6  -(:+&)I - E .  e i k  ( D / z c o s 6 + z s i n 6 )  
inc  

(2akp)x [ (D/2) '  + ~ ' ] ' / 4  
H-plane: Ed = 

(D/2)1h{ sec ?4 [ 6 - (G +  C CY)] - csc %( 6 - ;))-cos ( k p  cos 6 - - 
-Hi,,, e i k  ( D / 2  cos 6 + x s i n  6 )  

(27rkp)X [ ( D / 2 ) 2  + ?I44 
E-plane: Hd = 

where x = T cos q, p = r sin q, 6 = tan-' x / ( D / 2 ) .  As x increases, 6 + 7 / 2  and the second term in brackets 

[ C S C 3 6  (6 - ;)+ 53 
dominates Eq. (21)  so that 

E .  e i k  ( D / t c o s  6 + z s i n 6 )  
anc 

(2akp)% [ (D/2) '  + ~ ~ 1 %  
- 

H-plane: Ed = 

H .  e i k  ( D / z  c v s  6 + r s i n  6 )  rnc 

(2akp)S [ ( D / 2 ) 2  + ~ ~ ] ' ' 4  

- 
E-plane: Hd = 

(23)  

(24) 

Equations (23)  and (24)  must be multiplied by the axial caustic correction factor 

$5 (2Tkp cos 8)s sec 

which has been obtained from solutions of the scalar wave equation in cylindrical coordinates.? This caustic correction, 
together with other simplifications reduces Eqs. (23)  and (24) to: 

If the point source feed is tapered to produce a uniform 
aperture distribution, then the geometrical optic ray re- 
flected along the axis is 

H-plane: E, = -Einceik' (27)  

E-plane: H ,  = Hinceikx (28)  

The sum of the singly edge-diffracted ray and the geo- 
metrical ray on axis is then: 

,i kr 
H-plane: E, = ik 

E-plane: H, = - ik  (30)  

Equations (29)  and (30) for the main-lobe intensity of a 
paraboloid are in agreement with the results from integral 

6 

diffraction theory (Ref. 6), a result which cannot be ob- 
tained from geometrical optics alone. 

A similar correction procedure may be carried out to 
determine the axial field behind the paraboloid in the 
direction = T .  The result is: 

- Einc  eikr  (kD/2)4'L 
kr (2,)lh H-plane: Ed = 

- Hinc  eikr (kD/2)'h 
(2a)'h kr E-plane: Hd = 

'See Appendix. 

J P L  TECHNICAL REPORT 32- 7 1 13 



The principal-plane field intensities in the forward direc- 
tion, as predicted by the geometrical theory, are equal to 
each other and are equal to the classical integral result. 
However, in the backward direction the principal-plane 
fields are not equal to each other?, nor are they equal to 
the classical result (Ref. 7). However, manipulation of 
Eqs. (31) and (32) shows that the classical result for the 

3Resulting from the fact that the singly edge-diffracted fields alone 
do not strictly satisfy the field equations. 

* 

0 

-10 

n 
U 

r- -20 
I- 
(3 z 
W u 
!i) 
n 
-I w 
!L 

W 
2 
I- 5 -30 
W 
[L 

-40 

-50 

back-lobe intensity is the geometric mean of the E- and 
H-plane back-lobe intensities as predicted by the geo- 
metrical theory. This result may tend to reinforce the use- 
fulness of the integral theory in the back-lobe region. 

The H-plane results of a numerical example are pre- 
sented in Fig. 5 along with the equivalent result computed 
from the integral diffraction theory. The comparison is 
excellent with the following three exceptions: 1) the theory 
of geometrical diffraction is not valid near the shadow- 

\ 
-THEORY OF GEOMETRICAL DIFFRACTION 

CLASSICAL INTEGRAL THEORY 

I 

, 30 I 
I20 I! 

9, d9g 

Fig. 5. H-plane field scattered from paraboloid; F / D  = 0.43, D = 10h 

I 7 
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light boundary, where the field becomes singular (see 
below for a discussion of this); 2) the geometrical theory, 
while not valid in the forward direction, has been cor- 
rected to agree with the classical result; and 3) the geo- 
metrical result is considerably lower than the classical 
result in the backward direction. However, the E-plane 
back-lobe is correspondingly higher, as discussed above. 

These expressions will be used to determine the edge- 
diffracted fields. Using the methods of geometrical optics 
it can be shown that the geometrically scattered field is: 

* 

e2 - 1 
H-plane: E, = -E, IV. Edge Diffraction from a Hyperboloid' 

It is assumed that the hyperboloid is illuminated by a 
point-source feed located at F ,  one of the two hyperboloid 
foci, Fig. 6. The field emerging from F is: 

H-plane: = 0, * > Oe 

0 I d ' &  e: E ,  eikp 
P 

H-plane: E, = ___, 

(33) 
= 0, 0' > 8: 

E-plane: H, = H, 

0 4 0 ' 4  e: H , ,  elhp 
E-plane: HF = -, 

n 

(34) 
= 0, e' > e: 

E-plane: = 0, * > 0, 

where 
Thus the field incident on the edges will be respectively 

e ,  - e: 
6 t  =- 2 

ee + e: 
a = - (7) 

The hyperboloid is taken as a specific form of the general conic 
section of revolution. By choosing appropriate values of the eccen- 
tricity e, the formulas can be extended to discs, ellipsoids, etc. x = D/2 tan 8, 

1 c = -  "( - ++ 
4 tan0, tand, 

R. + [($)'+ 4 ( 1 -  - -Osee  Ro 
c c 

e =  

C a = -  
e (43) 

The total edge-diffracted rays can be determined in 
each of the principal planes by combining the rays from 

Fig. 6. Geometrical-optics scattering 
from hyperboloid 
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NORMAL - A::? 
NORMAL - 

--4 
Fig. 7. Edge-diffracted geometry for hyperboloid 

each edge as was done in the previous section. The results at great distances, Fig. 7, are: 

- E i n c  e ikr  (kD/2)lA 
(2,)'h (kr) (sin *)'h 

H-plane: Ed = 

sin-- cos- Y sin-+ P sin - P + cos 31 
0 < * < < - - 8 s ,  (44) 2 

- 2 
x [ C O S T  ( . :  sin a - sin 7 + sin a + sin p sina - siny sina + sinp ' 

where T = ( k D / 2 )  sin* - 7/4; p = 7 + 6t - *; y = - 6 t  - *. 

(sin 5- cos- 
-Hi,,, eik7 (kD/2)'h 
( 2 , ) s  (kr) (sin *)I/$ 

E-plane: Hd = 

sinP-  -.$)I Y P 
0 < * < 90 - 6 t  (45) 

2 sin -+ cos - sin -- cos 
- 2 x COST [ ( . ;  sin a - sin . 2  y + sin a + sin p sin (Y - sin y sin LY + sin ' 

Equations (44) and (45) are valid everywhere in the range 0 < * < 90 - s t  except at + = e,, the shadow-light boundary. 

The singly edge-diffracted ray from Edge 2 is blocked by the hyperboloid in the range 90 - 6 t  < Ik < 90, with the 
result that: 

(46) H-plane: E - -Einc eikr  (kD/2)'h 90 - 8 t  < * < 90 
- 2 (27>l/i (kr)  (sin *)'h 

sina + sinp 

( e - i 7 )  90 - S t  < * < 90 (47) 
- Hinc e ikr  (kD/2)55 
2 (2,)lh (kr)  (sin *)'h 

E-plane: Ha = 

sina + sinp 

Results similar to Eqs. (44) and (45) may be obtained for the range @ > 90. However, these expressions are not of great 
physical interest and have not been included. 
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It is again necessary to apply a correction factor at @ = 0, the axial caustic. The results of this correction are: 

0: ex&) ,  = o 
2 

- E i n c e i k r ( k D / 2 )  
2 (kr) 

H-plane: E d  = 

- H i n c  e ikr  ( k D / 2 )  ( s e c y +  0: c s c s ) ,  = O  2 (kr)  2 E-plane: Hd = 

(48) 

(49) 
, 

The resulting H-plane scattered field is plotted in Fig. 8 
for a specific numerical example. Plotted in the figure are 
curves computed from: Kirchhoff integral theory; geo- 
metrical optics; and geometrical diffraction theory, which 
contains the geometrical optic ray and the two singly edge- 
diffracted rays. In the geometrical “backscattering” region 

from 0 to 60 deg, the Kirchhoff result and the geometri- 
cal diffraction results virtually coincide, except near the 
shadow-light boundary at 60 deg. As discussed earlier 
the asymptotic expressions, upon which the geometrical 
theory is based, are not valid close to a shadow-light 

IO 

C 
n 
0 

I 
I- 
(3 
2 
W a 
Li 
0 
J 

LL 
W 

w 

: 
4 
W 
(L 

-IC 

-a 

10 

KIRCHHOFF INTEGRAL - --- GEOMETRICAL DIFFRACTION -- GEOMETRICAL OPTICS 

I 
IO 

i/\ I 1  

30 40 50 60 

4 deg 

‘\ 

I 90 

Fig. 8. H-plane field scattered from hyperboloid; D = 24.6h, e = 1.6707 
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boundary. It can be shown, however, and verified experi- 
mentally, that at a shadow-light boundary the scattered 
field is $5 (i.e., - 6 db) of the value predicted from geomet- 
rical optics. The theory must be modified to give accurate 
results on either side of the boundary. Such a modification 
has been outlined by Kay (Ref. 8) who employs Fresnel 
zones to calculate the field in this region. 

- 

’ 

V. Summary 

The geometrical theory of singly edge-diffracted rays 
provides an excellent first order correction to the theory 

of geometrical optics in application to antenna theory. The 
theory compares favorably with the classical Kirchhoff 
integral theory, but the computational time is an order of 
magnitude smaller. The geometrical theory provides a 
clearer physical insight into diffraction phenomena. The 
greatest disadvantage of the geometrical theory lies in the 
singularities near the shadow-light boundary. Until more 
precise geometrical constructions are available for analysis 
near this singular region, it is necessary to apply the inte- 
gral theory here. Consequently, the geometrical tech- 
niques and integral techniques complement each other 
in most reflector antenna problems. 
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Appendix 

Derivation" of Axial-Caustic Correction Factor 

A general solution of the scalar wave equation is: 

J ,  ( k p  cos 6 )  cos n + (A-1) = e i k z s i n d  

For large k p  > > 1, the asymptotic value of the Bessel function can be used, 
yielding: 

1 x 
kpcoss - - (n  + $5) 2 

(2)lr. cos n + = e i h c s i n d  
( x k p  cos 6)'h 

Expanding the cosine factor: 

P'J I- + 
Y 

X 

Hence two types of ray pass through each point P ,  one moving away from the z-axis 
making an angle ~ / 2  - 6 with the axis (the first term of Eq. A-3) and one moving 
toward the z-axis making an angle 7/2 - 6 with the axis. Since Eq. (A-2), and hence 
Eq. (A-3), blows up on the z-axis, it is necessary to multiply Eq. (A-2) by a correc- 
tion factor which yields Eq. (A-1) for k p  < < 1 and the useful geometric result 
Eq. (A-3) for large k p  > > 1. By inspection this correction factor is: 

1 x 
k p  cos 6 - 5 (n + %) 

( x k p  cos 6)s 
(2)U 

'This derivation is found in Appendix IV of Ref. 1. 
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